Assumptions:
TeX:
\left(1 - {z}^{2}\right) P'_{n}(z) + n z P_{n}\!\left(z\right) - n P_{n - 1}\!\left(z\right) = 0
n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| ComplexDerivative | Complex derivative | |
| LegendrePolynomial | Legendre polynomial | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("925fdf"),
Formula(Equal(Sub(Add(Mul(Sub(1, Pow(z, 2)), ComplexDerivative(LegendrePolynomial(n, z), For(z, z, 1))), Mul(Mul(n, z), LegendrePolynomial(n, z))), Mul(n, LegendrePolynomial(Sub(n, 1), z))), 0)),
Variables(n, z),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(z, CC))))