Assumptions:
TeX:
\prod_{k=0}^{m - 1} \Gamma\!\left(z + \frac{k}{m}\right) = {\left(2 \pi\right)}^{\left( m - 1 \right) / 2} {m}^{1 / 2 - m z} \Gamma\!\left(m z\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; m z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Product | Product | |
Gamma | Gamma function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("90a1e1"), Formula(Equal(Product(Gamma(Add(z, Div(k, m))), For(k, 0, Sub(m, 1))), Mul(Mul(Pow(Mul(2, Pi), Div(Sub(m, 1), 2)), Pow(m, Sub(Div(1, 2), Mul(m, z)))), Gamma(Mul(m, z))))), Variables(z, m), Assumptions(And(Element(z, CC), Element(m, ZZGreaterEqual(1)), NotElement(Mul(m, z), ZZLessEqual(0)))))