Assumptions:
References:
- M. A. Boutiche and M. Rahmani (2017), On the higher derivatives of the inverse tangent function, https://arxiv.org/abs/1712.03521, Theorem 9
TeX:
{\operatorname{atan}}^{(n)}(z) = \frac{\left(n - 1\right)!}{{\left(1 + {z}^{2}\right)}^{\left( n + 1 \right) / 2}} U_{n - 1}\!\left(-\frac{z}{\sqrt{1 + {z}^{2}}}\right) n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; i z \notin \left(-\infty, -1\right] \cup \left[1, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
Atan | Inverse tangent | |
Factorial | Factorial | |
Pow | Power | |
ChebyshevU | Chebyshev polynomial of the second kind | |
Sqrt | Principal square root | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
ConstI | Imaginary unit | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("90631b"), Formula(Equal(ComplexDerivative(Atan(z), For(z, z, n)), Mul(Div(Factorial(Sub(n, 1)), Pow(Add(1, Pow(z, 2)), Div(Add(n, 1), 2))), ChebyshevU(Sub(n, 1), Neg(Div(z, Sqrt(Add(1, Pow(z, 2))))))))), Variables(z, n), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(z, CC), NotElement(Mul(ConstI, z), Union(OpenClosedInterval(Neg(Infinity), -1), ClosedOpenInterval(1, Infinity))))), References("M. A. Boutiche and M. Rahmani (2017), On the higher derivatives of the inverse tangent function, https://arxiv.org/abs/1712.03521, Theorem 9"))