Assumptions:
TeX:
\frac{\lambda(\tau)}{\lambda(\tau) - 1} = -\frac{\theta_{2}^{4}\!\left(0, \tau\right)}{\theta_{4}^{4}\!\left(0, \tau\right)} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ModularLambda | Modular lambda function | |
Pow | Power | |
JacobiTheta | Jacobi theta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("903962"), Formula(Equal(Div(ModularLambda(tau), Sub(ModularLambda(tau), 1)), Neg(Div(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4))))), Variables(tau), Assumptions(Element(tau, HH)))