Assumptions:
TeX:
\frac{\lambda(\tau)}{\lambda(\tau) - 1} = -\frac{\theta_{2}^{4}\!\left(0, \tau\right)}{\theta_{4}^{4}\!\left(0, \tau\right)}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ModularLambda | Modular lambda function | |
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("903962"),
Formula(Equal(Div(ModularLambda(tau), Sub(ModularLambda(tau), 1)), Neg(Div(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4))))),
Variables(tau),
Assumptions(Element(tau, HH)))