Assumptions:
References:
- https://arxiv.org/abs/1703.02844
TeX:
\left(\operatorname{Re}\!\left(\rho_{n}\right) = \frac{1}{2} \;\text{ for all } n \in \mathbb{Z}_{\ge 1} \text{ with } \operatorname{Im}\!\left(\rho_{n}\right) < T\right) \;\implies\; \left(\lambda_{n} \ge 0 \;\text{ for all } n \in \mathbb{Z}_{\ge 0} \text{ with } n \le {T}^{2}\right) T \in \left[0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Re | Real part | |
RiemannZetaZero | Nontrivial zero of the Riemann zeta function | |
ZZGreaterEqual | Integers greater than or equal to n | |
Im | Imaginary part | |
KeiperLiLambda | Keiper-Li coefficient | |
Pow | Power | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("8f8fb7"), Formula(Implies(All(Equal(Re(RiemannZetaZero(n)), Div(1, 2)), ForElement(n, ZZGreaterEqual(1)), Less(Im(RiemannZetaZero(n)), T)), All(GreaterEqual(KeiperLiLambda(n), 0), ForElement(n, ZZGreaterEqual(0)), LessEqual(n, Pow(T, 2))))), Variables(T), Assumptions(Element(T, ClosedOpenInterval(0, Infinity))), References("https://arxiv.org/abs/1703.02844"))