Assumptions:
TeX:
\zeta\!\left(s\right) = \prod_{p \in \mathbb{P}} \frac{1}{1 - \frac{1}{{p}^{s}}}
s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) \gt 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannZeta | Riemann zeta function | |
| Pow | Power | |
| PP | Prime numbers | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("8f5e66"),
Formula(Equal(RiemannZeta(s), ProductCondition(Div(1, Sub(1, Div(1, Pow(p, s)))), p, Element(p, PP)))),
Variables(s),
Assumptions(And(Element(s, CC), Greater(Re(s), 1))))