Assumptions:
TeX:
\zeta\!\left(s\right) = \prod_{p \in \mathbb{P}} \frac{1}{1 - \frac{1}{{p}^{s}}} s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) \gt 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannZeta | Riemann zeta function | |
Pow | Power | |
PP | Prime numbers | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("8f5e66"), Formula(Equal(RiemannZeta(s), ProductCondition(Div(1, Sub(1, Div(1, Pow(p, s)))), p, Element(p, PP)))), Variables(s), Assumptions(And(Element(s, CC), Greater(Re(s), 1))))