Assumptions:
TeX:
\Pi\!\left(n, \phi, m\right) = \sin(\phi) R_F\!\left(\cos^{2}\!\left(\phi\right), 1 - m \sin^{2}\!\left(\phi\right), 1\right) + \frac{1}{3} n \sin^{3}\!\left(\phi\right) R_J\!\left(\cos^{2}\!\left(\phi\right), 1 - m \sin^{2}\!\left(\phi\right), 1, 1 - n \sin^{2}\!\left(\phi\right)\right) n \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \phi \in \mathbb{C} \;\mathbin{\operatorname{and}}\; m \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \frac{-\pi}{2} \le \operatorname{Re}(\phi) \le \frac{\pi}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
IncompleteEllipticPi | Legendre incomplete elliptic integral of the third kind | |
Sin | Sine | |
CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
Pow | Power | |
Cos | Cosine | |
CarlsonRJ | Carlson symmetric elliptic integral of the third kind | |
CC | Complex numbers | |
Pi | The constant pi (3.14...) | |
Re | Real part |
Source code for this entry:
Entry(ID("8f4e31"), Formula(Equal(IncompleteEllipticPi(n, phi, m), Add(Mul(Sin(phi), CarlsonRF(Pow(Cos(phi), 2), Sub(1, Mul(m, Pow(Sin(phi), 2))), 1)), Mul(Mul(Mul(Div(1, 3), n), Pow(Sin(phi), 3)), CarlsonRJ(Pow(Cos(phi), 2), Sub(1, Mul(m, Pow(Sin(phi), 2))), 1, Sub(1, Mul(n, Pow(Sin(phi), 2)))))))), Variables(n, phi, m), Assumptions(And(Element(n, CC), Element(phi, CC), Element(m, CC), LessEqual(Div(Neg(Pi), 2), Re(phi), Div(Pi, 2)))))