Vajda's identity
Assumptions:
TeX:
F_{n + i} F_{n + j} - F_{n} F_{n + i + j} = {\left(-1\right)}^{n} F_{i} F_{j} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; i \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; j \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fibonacci number | |
Pow | Power | |
ZZ | Integers |
Source code for this entry:
Entry(ID("8db61e"), Formula(Equal(Sub(Mul(Fibonacci(Add(n, i)), Fibonacci(Add(n, j))), Mul(Fibonacci(n), Fibonacci(Add(Add(n, i), j)))), Mul(Mul(Pow(-1, n), Fibonacci(i)), Fibonacci(j)))), Description("Vajda's identity"), Variables(n, i, j), Assumptions(And(Element(n, ZZ), Element(i, ZZ), Element(j, ZZ))))