Assumptions:
TeX:
R_D\!\left(x, y, z\right) = R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right], \left[x, y, z\right]\right) x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; \left(x \ne 0 \;\mathbin{\operatorname{or}}\; y \ne 0\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
CarlsonHypergeometricR | Carlson multivariate hypergeometric function | |
CC | Complex numbers | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("8d304b"), Formula(Equal(CarlsonRD(x, y, z), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), Div(3, 2)), List(x, y, z)))), Variables(x, y, z), Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Or(NotEqual(x, 0), NotEqual(y, 0)))))