Assumptions:
TeX:
R_D\!\left(0, y, z\right) = {z}^{-3 / 2} \begin{cases} \frac{3 \left(K\!\left(1 - \frac{y}{z}\right) - E\!\left(1 - \frac{y}{z}\right)\right)}{1 - \frac{y}{z}}, & y \ne z\\\frac{3 \pi}{4}, & y = z\\ \end{cases} z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|\arg(y) - \arg(z)\right| < \pi
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
Pow | Power | |
EllipticK | Legendre complete elliptic integral of the first kind | |
EllipticE | Legendre complete elliptic integral of the second kind | |
Pi | The constant pi (3.14...) | |
CC | Complex numbers | |
Abs | Absolute value | |
Arg | Complex argument |
Source code for this entry:
Entry(ID("8d0629"), Formula(Equal(CarlsonRD(0, y, z), Mul(Pow(z, Neg(Div(3, 2))), Cases(Tuple(Div(Mul(3, Sub(EllipticK(Sub(1, Div(y, z))), EllipticE(Sub(1, Div(y, z))))), Sub(1, Div(y, z))), NotEqual(y, z)), Tuple(Div(Mul(3, Pi), 4), Equal(y, z)))))), Variables(y, z), Assumptions(And(Element(z, SetMinus(CC, Set(0))), Element(y, CC), Less(Abs(Sub(Arg(y), Arg(z))), Pi))))