Fungrim home page

Fungrim entry: 8c9ba1

RC ⁣(x,cx)={atan ⁣(c1)(c1)x,c>11x,c=1atanh ⁣(1c)(1c)x,c<1R_C\!\left(x, c x\right) = \begin{cases} \frac{\operatorname{atan}\!\left(\sqrt{c - 1}\right)}{\sqrt{\left(c - 1\right) x}}, & c > 1\\\frac{1}{\sqrt{x}}, & c = 1\\\frac{\operatorname{atanh}\!\left(\sqrt{1 - c}\right)}{\sqrt{\left(1 - c\right) x}}, & c < 1\\ \end{cases}
Assumptions:xC  and  c(0,)x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right)
TeX:
R_C\!\left(x, c x\right) = \begin{cases} \frac{\operatorname{atan}\!\left(\sqrt{c - 1}\right)}{\sqrt{\left(c - 1\right) x}}, & c > 1\\\frac{1}{\sqrt{x}}, & c = 1\\\frac{\operatorname{atanh}\!\left(\sqrt{1 - c}\right)}{\sqrt{\left(1 - c\right) x}}, & c < 1\\ \end{cases}

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Atanatan(z)\operatorname{atan}(z) Inverse tangent
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("8c9ba1"),
    Formula(Equal(CarlsonRC(x, Mul(c, x)), Cases(Tuple(Div(Atan(Sqrt(Sub(c, 1))), Sqrt(Mul(Sub(c, 1), x))), Greater(c, 1)), Tuple(Div(1, Sqrt(x)), Equal(c, 1)), Tuple(Div(Atanh(Sqrt(Sub(1, c))), Sqrt(Mul(Sub(1, c), x))), Less(c, 1))))),
    Variables(x, c),
    Assumptions(And(Element(x, CC), Element(c, OpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC