Assumptions:
TeX:
R_C\!\left(x, c x\right) = \begin{cases} \frac{\operatorname{atan}\!\left(\sqrt{c - 1}\right)}{\sqrt{\left(c - 1\right) x}}, & c > 1\\\frac{1}{\sqrt{x}}, & c = 1\\\frac{\operatorname{atanh}\!\left(\sqrt{1 - c}\right)}{\sqrt{\left(1 - c\right) x}}, & c < 1\\ \end{cases}
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
| Atan | Inverse tangent | |
| Sqrt | Principal square root | |
| CC | Complex numbers | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("8c9ba1"),
Formula(Equal(CarlsonRC(x, Mul(c, x)), Cases(Tuple(Div(Atan(Sqrt(Sub(c, 1))), Sqrt(Mul(Sub(c, 1), x))), Greater(c, 1)), Tuple(Div(1, Sqrt(x)), Equal(c, 1)), Tuple(Div(Atanh(Sqrt(Sub(1, c))), Sqrt(Mul(Sub(1, c), x))), Less(c, 1))))),
Variables(x, c),
Assumptions(And(Element(x, CC), Element(c, OpenInterval(0, Infinity)))))