Fungrim home page

Fungrim entry: 8c368f

ψ ⁣(18)=π2(2+1)γ4log(2)log ⁣(2+2)log ⁣(22)2\psi\!\left(\frac{1}{8}\right) = -\frac{\pi}{2} \left(\sqrt{2} + 1\right) - \gamma - 4 \log(2) - \frac{\log\!\left(2 + \sqrt{2}\right) - \log\!\left(2 - \sqrt{2}\right)}{\sqrt{2}}
TeX:
\psi\!\left(\frac{1}{8}\right) = -\frac{\pi}{2} \left(\sqrt{2} + 1\right) - \gamma - 4 \log(2) - \frac{\log\!\left(2 + \sqrt{2}\right) - \log\!\left(2 - \sqrt{2}\right)}{\sqrt{2}}
Definitions:
Fungrim symbol Notation Short description
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
Piπ\pi The constant pi (3.14...)
Sqrtz\sqrt{z} Principal square root
ConstGammaγ\gamma The constant gamma (0.577...)
Loglog(z)\log(z) Natural logarithm
Source code for this entry:
Entry(ID("8c368f"),
    Formula(Equal(DigammaFunction(Div(1, 8)), Sub(Sub(Sub(Neg(Mul(Div(Pi, 2), Add(Sqrt(2), 1))), ConstGamma), Mul(4, Log(2))), Div(Sub(Log(Add(2, Sqrt(2))), Log(Sub(2, Sqrt(2)))), Sqrt(2))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC