Assumptions:
TeX:
\zeta\!\left(s, \frac{1}{4}\right) + \zeta\!\left(s, \frac{3}{4}\right) = {2}^{s} \left({2}^{s} - 1\right) \zeta\!\left(s\right) s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
Pow | Power | |
RiemannZeta | Riemann zeta function | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("8bbb6f"), Formula(Equal(Add(HurwitzZeta(s, Div(1, 4)), HurwitzZeta(s, Div(3, 4))), Mul(Mul(Pow(2, s), Sub(Pow(2, s), 1)), RiemannZeta(s)))), Variables(s), Assumptions(And(Element(s, CC), NotEqual(s, 1))))