Assumptions:
TeX:
\theta_{4}\!\left(2 z , \tau\right) = \frac{\theta_{4}^{4}\!\left(z, \tau\right) - \theta_{1}^{4}\!\left(z, \tau\right)}{\theta_{4}^{3}\!\left(0, \tau\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | 
Source code for this entry:
Entry(ID("8b825c"),
    Formula(Equal(JacobiTheta(4, Mul(2, z), tau), Div(Sub(Pow(JacobiTheta(4, z, tau), 4), Pow(JacobiTheta(1, z, tau), 4)), Pow(JacobiTheta(4, 0, tau), 3)))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))