TeX:
\frac{\pi}{4} \sum_{q=1}^{\infty} \frac{\varphi(q)}{{q}^{4}} = \frac{\pi}{4} \frac{\zeta\!\left(3\right)}{\zeta\!\left(4\right)} = \frac{45 \zeta\!\left(3\right)}{2 {\pi}^{3}}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pi | The constant pi (3.14...) | |
Sum | Sum | |
Totient | Euler totient function | |
Pow | Power | |
Infinity | Positive infinity | |
RiemannZeta | Riemann zeta function |
Source code for this entry:
Entry(ID("8a9884"), Formula(Equal(Mul(Div(Pi, 4), Sum(Div(Totient(q), Pow(q, 4)), For(q, 1, Infinity))), Mul(Div(Pi, 4), Div(RiemannZeta(3), RiemannZeta(4))), Div(Mul(45, RiemannZeta(3)), Mul(2, Pow(Pi, 3))))))