Assumptions:
TeX:
\theta_{3}^{4}\!\left(0, \tau\right) = 1 + 8 \sum_{n=0}^{\infty} \frac{2 n {q}^{2 n}}{1 + {q}^{2 n}} + 8 \sum_{n=0}^{\infty} \frac{\left(2 n + 1\right) {q}^{2 n + 1}}{1 - {q}^{2 n + 1}}\; \text{ where } q = {e}^{\pi i \tau}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| Sum | Sum | |
| Infinity | Positive infinity | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("8a316c"),
Formula(Equal(Pow(JacobiTheta(3, 0, tau), 4), Where(Add(Add(1, Mul(8, Sum(Div(Mul(Mul(2, n), Pow(q, Mul(2, n))), Add(1, Pow(q, Mul(2, n)))), For(n, 0, Infinity)))), Mul(8, Sum(Div(Mul(Add(Mul(2, n), 1), Pow(q, Add(Mul(2, n), 1))), Sub(1, Pow(q, Add(Mul(2, n), 1)))), For(n, 0, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(tau),
Assumptions(Element(tau, HH)))