Assumptions:
TeX:
{\left(\varepsilon_{j}\!\left(a, b, c, d\right)\right)}^{8} = 1
j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiThetaEpsilon | Root of unity in modular transformation of Jacobi theta functions | |
| Matrix2x2 | Two by two matrix | |
| SL2Z | Modular group |
Source code for this entry:
Entry(ID("89e79d"),
Formula(Equal(Pow(JacobiThetaEpsilon(j, a, b, c, d), 8), 1)),
Variables(j, a, b, c, d),
Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(Matrix2x2(a, b, c, d), SL2Z))))