Assumptions:
TeX:
\sum_{n=1}^{\infty} \psi\!\left(n\right) \frac{{z}^{n}}{n !} = z \left[ \frac{d}{d a}\, \,{}_1F_1\!\left(a, 2, z\right) \right]_{a = 1} - \gamma \left({e}^{z} - 1\right) z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
DigammaFunction | Digamma function | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
ComplexDerivative | Complex derivative | |
Hypergeometric1F1 | Kummer confluent hypergeometric function | |
ConstGamma | The constant gamma (0.577...) | |
Exp | Exponential function | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("88e89f"), Formula(Equal(Sum(Mul(DigammaFunction(n), Div(Pow(z, n), Factorial(n))), For(n, 1, Infinity)), Sub(Mul(z, ComplexDerivative(Hypergeometric1F1(a, 2, z), For(a, 1))), Mul(ConstGamma, Sub(Exp(z), 1))))), Variables(z), Assumptions(Element(z, CC)))