Assumptions:
References:
- Jon Grantham (1995), The largest prime dividing the maximal order of an element of S_n, 64, 209, pp. 407--210, https://doi.org/10.2307/2153344
TeX:
\max \left\{ p : p \in \mathbb{P} \;\mathbin{\operatorname{and}}\; p \mid g(n) \right\} \le 1.328 \sqrt{n \log(n)}
n \in \mathbb{Z}_{\ge 5}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Maximum | Maximum value of a set or function | |
| PP | Prime numbers | |
| LandauG | Landau's function | |
| Sqrt | Principal square root | |
| Log | Natural logarithm | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("87d19b"),
Formula(LessEqual(Maximum(Set(p, For(p), And(Element(p, PP), Divides(p, LandauG(n))))), Mul(Decimal("1.328"), Sqrt(Mul(n, Log(n)))))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(5))),
References("Jon Grantham (1995), The largest prime dividing the maximal order of an element of S_n, 64, 209, pp. 407--210, https://doi.org/10.2307/2153344"))