Assumptions:
TeX:
{\left(-1\right)}^{m + 1} \psi^{(m)}\!\left(x\right) < \frac{\left(m - 1\right)!}{{x}^{m}} + \frac{m !}{{x}^{m + 1}}
m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| DigammaFunction | Digamma function | |
| Factorial | Factorial | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("8671a4"),
Formula(Less(Mul(Pow(-1, Add(m, 1)), DigammaFunction(x, m)), Add(Div(Factorial(Sub(m, 1)), Pow(x, m)), Div(Factorial(m), Pow(x, Add(m, 1)))))),
Variables(m, x),
Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(x, OpenInterval(0, Infinity)))))