Assumptions:
TeX:
\theta_{3}\!\left(0 , \tau\right) = \frac{\eta^{2}\!\left(\frac{1}{2} \left(\tau + 1\right)\right)}{\eta\!\left(\tau + 1\right)} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Pow | Power | |
DedekindEta | Dedekind eta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("85b2ff"), Formula(Equal(JacobiTheta(3, 0, tau), Div(Pow(DedekindEta(Mul(Div(1, 2), Add(tau, 1))), 2), DedekindEta(Add(tau, 1))))), Variables(tau), Assumptions(Element(tau, HH)))