Assumptions:
TeX:
P_{2 n + 1}\!\left(z\right) = \frac{{\left(-1\right)}^{n}}{{4}^{n}} \left(2 n + 1\right) {2 n \choose n} z \,{}_2F_1\!\left(-n, n + \frac{3}{2}, \frac{3}{2}, {z}^{2}\right)
n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LegendrePolynomial | Legendre polynomial | |
| Pow | Power | |
| Binomial | Binomial coefficient | |
| Hypergeometric2F1 | Gauss hypergeometric function | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("859445"),
Formula(Equal(LegendrePolynomial(Add(Mul(2, n), 1), z), Mul(Mul(Mul(Mul(Div(Pow(-1, n), Pow(4, n)), Add(Mul(2, n), 1)), Binomial(Mul(2, n), n)), z), Hypergeometric2F1(Neg(n), Add(n, Div(3, 2)), Div(3, 2), Pow(z, 2))))),
Variables(n, z),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, SetMinus(CC)))))