Fungrim home page

Fungrim entry: 8519dd

RF ⁣(0,(Γ ⁣(14))432π,(Γ ⁣(14))432π)=1iR_F\!\left(0, \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{32 \pi}, \frac{-{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{32 \pi}\right) = 1 - i
TeX:
R_F\!\left(0, \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{32 \pi}, \frac{-{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{4}}{32 \pi}\right) = 1 - i
Definitions:
Fungrim symbol Notation Short description
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
Powab{a}^{b} Power
GammaΓ(z)\Gamma(z) Gamma function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Source code for this entry:
Entry(ID("8519dd"),
    Formula(Equal(CarlsonRF(0, Div(Pow(Gamma(Div(1, 4)), 4), Mul(32, Pi)), Div(Neg(Pow(Gamma(Div(1, 4)), 4)), Mul(32, Pi))), Sub(1, ConstI))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC