Assumptions:
TeX:
\zeta\!\left(n, a\right) = \frac{{\left(-1\right)}^{n}}{\left(n - 1\right)!} \psi^{(n - 1)}\!\left(a\right)
n \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HurwitzZeta | Hurwitz zeta function | |
| Pow | Power | |
| Factorial | Factorial | |
| DigammaFunction | Digamma function | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("84196a"),
Formula(Equal(HurwitzZeta(n, a), Mul(Div(Pow(-1, n), Factorial(Sub(n, 1))), DigammaFunction(a, Sub(n, 1))))),
Variables(n, a),
Assumptions(And(Element(n, ZZGreaterEqual(2)), Element(a, CC))))