Assumptions:
TeX:
\frac{d^{r}}{{d z}^{r}} \sqrt{z} = {\left(-1\right)}^{r} \left(-\frac{1}{2}\right)_{r} {z}^{r - 1 / 2} z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
Sqrt | Principal square root | |
Pow | Power | |
RisingFactorial | Rising factorial | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("83abff"), Formula(Equal(ComplexDerivative(Sqrt(z), For(z, z, r)), Mul(Mul(Pow(-1, r), RisingFactorial(Neg(Div(1, 2)), r)), Pow(z, Sub(r, Div(1, 2)))))), Variables(z, r), Assumptions(And(Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(r, ZZGreaterEqual(0)))))