Assumptions:
TeX:
\Pi\!\left(n, m\right) = \int_{0}^{\pi / 2} \frac{1}{\left(1 - n \sin^{2}\!\left(x\right)\right) \sqrt{1 - m \sin^{2}\!\left(x\right)}} \, dx
n \in \left(-\infty, 1\right) \;\mathbin{\operatorname{and}}\; m \in \left(-\infty, 1\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EllipticPi | Legendre complete elliptic integral of the third kind | |
| Integral | Integral | |
| Pow | Power | |
| Sin | Sine | |
| Sqrt | Principal square root | |
| Pi | The constant pi (3.14...) | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("83a535"),
Formula(Equal(EllipticPi(n, m), Integral(Div(1, Mul(Sub(1, Mul(n, Pow(Sin(x), 2))), Sqrt(Sub(1, Mul(m, Pow(Sin(x), 2)))))), For(x, 0, Div(Pi, 2))))),
Variables(n, m),
Assumptions(And(Element(n, OpenInterval(Neg(Infinity), 1)), Element(m, OpenInterval(Neg(Infinity), 1)))))