Fungrim home page

Fungrim entry: 830dd4

{λ(τ):τInterior(Fλ)}=C((,0][1,))\left\{ \lambda(\tau) : \tau \in \operatorname{Interior}(\mathcal{F}_{\lambda}) \right\} = \mathbb{C} \setminus \left(\left(-\infty, 0\right] \cup \left[1, \infty\right)\right)
This mapping is one-to-one.
References:
  • J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118.
TeX:
\left\{ \lambda(\tau) : \tau \in \operatorname{Interior}(\mathcal{F}_{\lambda}) \right\} = \mathbb{C} \setminus \left(\left(-\infty, 0\right] \cup \left[1, \infty\right)\right)
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ(τ)\lambda(\tau) Modular lambda function
ModularLambdaFundamentalDomainFλ\mathcal{F}_{\lambda} Fundamental domain of the modular lambda function
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Source code for this entry:
Entry(ID("830dd4"),
    Formula(Equal(Set(ModularLambda(tau), ForElement(tau, Interior(ModularLambdaFundamentalDomain))), SetMinus(CC, Parentheses(Union(OpenClosedInterval(Neg(Infinity), 0), ClosedOpenInterval(1, Infinity)))))),
    Description("This mapping is one-to-one."),
    References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC