This mapping is one-to-one.
References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118.
TeX:
\left\{ \lambda(\tau) : \tau \in \operatorname{Interior}(\mathcal{F}_{\lambda}) \right\} = \mathbb{C} \setminus \left(\left(-\infty, 0\right] \cup \left[1, \infty\right)\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ModularLambda | Modular lambda function | |
ModularLambdaFundamentalDomain | Fundamental domain of the modular lambda function | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("830dd4"), Formula(Equal(Set(ModularLambda(tau), ForElement(tau, Interior(ModularLambdaFundamentalDomain))), SetMinus(CC, Parentheses(Union(OpenClosedInterval(Neg(Infinity), 0), ClosedOpenInterval(1, Infinity)))))), Description("This mapping is one-to-one."), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118."))