Assumptions:
TeX:
\frac{d}{d a}\, \zeta\!\left(s, a\right) = -s \zeta\!\left(s + 1, a\right)
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \notin \left\{0, 1\right\} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| HurwitzZeta | Hurwitz zeta function | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("83065e"),
Formula(Equal(ComplexDerivative(HurwitzZeta(s, a), For(a, a)), Neg(Mul(s, HurwitzZeta(Add(s, 1), a))))),
Variables(s, a),
Assumptions(And(Element(s, CC), NotElement(s, Set(0, 1)), Element(a, CC), Greater(Re(a), 0))))