Fungrim home page

Fungrim entry: 818008

γ=1k=2ζ ⁣(k)1k\gamma = 1 - \sum_{k=2}^{\infty} \frac{\zeta\!\left(k\right) - 1}{k}
\gamma = 1 - \sum_{k=2}^{\infty} \frac{\zeta\!\left(k\right) - 1}{k}
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
Sumnf(n)\sum_{n} f(n) Sum
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(ConstGamma, Sub(1, Sum(Div(Sub(RiemannZeta(k), 1), k), For(k, 2, Infinity))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC