Assumptions:
TeX:
\theta_{3}\!\left(z , \tau\right) = \theta_{3}\!\left(0 , \tau\right) \prod_{n=1}^{\infty} \frac{\cos\!\left(\pi \left(\left(n - \frac{1}{2}\right) \tau + z\right)\right) \cos\!\left(\pi \left(\left(n - \frac{1}{2}\right) \tau - z\right)\right)}{\cos^{2}\!\left(\pi \left(n - \frac{1}{2}\right) \tau\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Product | Product | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("816057"), Formula(Equal(JacobiTheta(3, z, tau), Mul(JacobiTheta(3, 0, tau), Product(Div(Mul(Cos(Mul(Pi, Add(Mul(Sub(n, Div(1, 2)), tau), z))), Cos(Mul(Pi, Sub(Mul(Sub(n, Div(1, 2)), tau), z)))), Pow(Cos(Mul(Pi, Mul(Sub(n, Div(1, 2)), tau))), 2)), For(n, 1, Infinity))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))