Assumptions:
TeX:
R_G\!\left(0, y, z\right) = \frac{1}{2} \int_{0}^{\pi / 2} \sqrt{y \cos^{2}\!\left(\theta\right) + z \sin^{2}\!\left(\theta\right)} \, d\theta
y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) \ge 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
| Integral | Integral | |
| Sqrt | Principal square root | |
| Pow | Power | |
| Cos | Cosine | |
| Sin | Sine | |
| Pi | The constant pi (3.14...) | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("7fbbe8"),
Formula(Equal(CarlsonRG(0, y, z), Mul(Div(1, 2), Integral(Sqrt(Add(Mul(y, Pow(Cos(theta), 2)), Mul(z, Pow(Sin(theta), 2)))), For(theta, 0, Div(Pi, 2)))))),
Variables(y, z),
Assumptions(And(Element(y, CC), Element(z, CC), GreaterEqual(Re(y), 0), GreaterEqual(Re(z), 0))))