References:
- https://doi.org/10.1016/j.jmaa.2003.12.009
TeX:
\theta_{3}\!\left(0 , \frac{i}{4}\right) = \left[\frac{1 + {2}^{-1 / 4}}{\sqrt{1 + \sqrt{2}}} \sqrt{\frac{\sqrt{2} + 1}{2}} \cdot {2}^{1 / 2}\right] \theta_{3}\!\left(0 , i\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Pow | Power | |
Sqrt | Principal square root |
Source code for this entry:
Entry(ID("7f9273"), Formula(Equal(JacobiTheta(3, 0, Div(ConstI, 4)), Mul(Brackets(Mul(Mul(Div(Add(1, Pow(2, Neg(Div(1, 4)))), Sqrt(Add(1, Sqrt(2)))), Sqrt(Div(Add(Sqrt(2), 1), 2))), Pow(2, Div(1, 2)))), JacobiTheta(3, 0, ConstI)))), References("https://doi.org/10.1016/j.jmaa.2003.12.009"))