Assumptions:
TeX:
\sum_{n=1}^{\infty} \frac{\varphi(n) {q}^{n}}{1 - {q}^{n}} = \frac{q}{{\left(1 - q\right)}^{2}} q \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|q\right| < 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Totient | Euler totient function | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("7f5468"), Formula(Equal(Sum(Div(Mul(Totient(n), Pow(q, n)), Sub(1, Pow(q, n))), For(n, 1, Infinity)), Div(q, Pow(Sub(1, q), 2)))), Variables(q), Assumptions(And(Element(q, CC), Less(Abs(q), 1))))