Fungrim home page

Fungrim entry: 7ea1ad

RC ⁣(1,1)=π242log ⁣(1+2)2iR_C\!\left(-1, 1\right) = \frac{\pi \sqrt{2}}{4} - \frac{\sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{2} i
TeX:
R_C\!\left(-1, 1\right) = \frac{\pi \sqrt{2}}{4} - \frac{\sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{2} i
Definitions:
Fungrim symbol Notation Short description
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Piπ\pi The constant pi (3.14...)
Sqrtz\sqrt{z} Principal square root
Loglog(z)\log(z) Natural logarithm
ConstIii Imaginary unit
Source code for this entry:
Entry(ID("7ea1ad"),
    Formula(Equal(CarlsonRC(-1, 1), Sub(Div(Mul(Pi, Sqrt(2)), 4), Mul(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), ConstI)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC