Assumptions:
TeX:
\zeta\!\left(s, a\right) = \frac{1}{{N}^{s}} \sum_{k=0}^{N - 1} \zeta\!\left(s, \frac{a + k}{N}\right)
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| HurwitzZeta | Hurwitz zeta function | |
| Pow | Power | |
| Sum | Sum | |
| CC | Complex numbers | |
| Re | Real part | |
| ZZGreaterEqual | Integers greater than or equal to n | 
Source code for this entry:
Entry(ID("7d9feb"),
    Formula(Equal(HurwitzZeta(s, a), Mul(Div(1, Pow(N, s)), Sum(HurwitzZeta(s, Div(Add(a, k), N)), For(k, 0, Sub(N, 1)))))),
    Variables(s, a, N),
    Assumptions(And(Element(s, CC), Element(a, CC), NotEqual(s, 1), Greater(Re(a), 0), Element(N, ZZGreaterEqual(1)))))