Assumptions:
TeX:
R_G\!\left(0, x, y\right) = \frac{\sqrt{x} E\!\left(1 - \frac{y}{x}\right)}{2}
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|\arg(x) - \arg(y)\right| < \piDefinitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
| Sqrt | Principal square root | |
| EllipticE | Legendre complete elliptic integral of the second kind | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| Arg | Complex argument | |
| Pi | The constant pi (3.14...) | 
Source code for this entry:
Entry(ID("7cddc6"),
    Formula(Equal(CarlsonRG(0, x, y), Div(Mul(Sqrt(x), EllipticE(Sub(1, Div(y, x)))), 2))),
    Variables(x, y),
    Assumptions(And(Element(x, CC), Element(y, CC), Less(Abs(Sub(Arg(x), Arg(y))), Pi))))