Assumptions:
TeX:
K(m) = \int_{1}^{\infty} \frac{1}{\sqrt{{x}^{2} - 1} \sqrt{{x}^{2} - m}} \, dx
m \in \mathbb{C} \setminus \left[1, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EllipticK | Legendre complete elliptic integral of the first kind | |
| Integral | Integral | |
| Sqrt | Principal square root | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("7cd257"),
Formula(Equal(EllipticK(m), Integral(Div(1, Mul(Sqrt(Sub(Pow(x, 2), 1)), Sqrt(Sub(Pow(x, 2), m)))), For(x, 1, Infinity)))),
Variables(m),
Assumptions(Element(m, SetMinus(CC, ClosedOpenInterval(1, Infinity)))))