Assumptions:
TeX:
\theta_{4}^{k}\!\left(0, \tau\right) = \sum_{n=0}^{\infty} {\left(-1\right)}^{n} r_{k}\!\left(n\right) {q}^{n}\; \text{ where } q = {e}^{\pi i \tau}
k \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| Sum | Sum | |
| SquaresR | Sum of squares function | |
| Infinity | Positive infinity | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("7c90eb"),
Formula(Equal(Pow(JacobiTheta(4, 0, tau), k), Where(Sum(Mul(Mul(Pow(-1, n), SquaresR(k, n)), Pow(q, n)), For(n, 0, Infinity)), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(k, tau),
Assumptions(And(Element(k, ZZGreaterEqual(0)), Element(tau, HH))))