Assumptions:
TeX:
\int_{M + 1 / 2}^{N + 1 / 2} \theta_{1}\!\left(x , \tau\right) \, dx = 0
\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| JacobiTheta | Jacobi theta function | |
| HH | Upper complex half-plane | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("7c78ea"),
Formula(Equal(Integral(JacobiTheta(1, x, tau), For(x, Add(M, Div(1, 2)), Add(N, Div(1, 2)))), 0)),
Variables(tau, M, N),
Assumptions(And(Element(tau, HH), Element(M, ZZ), Element(N, ZZ))))