Fungrim home page

Fungrim entry: 7c78ea

M+1/2N+1/2θ1 ⁣(x,τ)dx=0\int_{M + 1 / 2}^{N + 1 / 2} \theta_{1}\!\left(x , \tau\right) \, dx = 0
Assumptions:τH  and  MZ  and  NZ\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}
TeX:
\int_{M + 1 / 2}^{N + 1 / 2} \theta_{1}\!\left(x , \tau\right) \, dx = 0

\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
HHH\mathbb{H} Upper complex half-plane
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("7c78ea"),
    Formula(Equal(Integral(JacobiTheta(1, x, tau), For(x, Add(M, Div(1, 2)), Add(N, Div(1, 2)))), 0)),
    Variables(tau, M, N),
    Assumptions(And(Element(tau, HH), Element(M, ZZ), Element(N, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC