Assumptions:
TeX:
R_G\!\left(0, x, -x\right) = \sqrt{x} \frac{\sqrt{2} {\pi}^{3 / 2}}{2 {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}} \begin{cases} 1 + i, & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\1 - i, & \text{otherwise}\\ \end{cases}
x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
| Sqrt | Principal square root | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| Gamma | Gamma function | |
| ConstI | Imaginary unit | |
| Im | Imaginary part | |
| Re | Real part | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("7c50d1"),
Formula(Equal(CarlsonRG(0, x, Neg(x)), Mul(Mul(Sqrt(x), Div(Mul(Sqrt(2), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2)))), Cases(Tuple(Add(1, ConstI), Or(Less(Im(x), 0), And(Equal(Im(x), 0), GreaterEqual(Re(x), 0)))), Tuple(Sub(1, ConstI), Otherwise))))),
Variables(x),
Assumptions(Element(x, CC)))