Assumptions:
TeX:
\sigma\!\left(z, \tau\right) = z \prod_{\left(m, n\right) \in {\mathbb{Z}}^{2} \setminus \left\{\left(0, 0\right)\right\}} \left(1 - \frac{z}{m + n \tau}\right) \exp\!\left(\frac{z}{m + n \tau} + \frac{{z}^{2}}{2 {\left(m + n \tau\right)}^{2}}\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; z \notin \Lambda_{(1, \tau)}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| WeierstrassSigma | Weierstrass sigma function | |
| Product | Product | |
| Exp | Exponential function | |
| Pow | Power | |
| ZZ | Integers | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("7c4457"),
Formula(Equal(WeierstrassSigma(z, tau), Mul(z, Product(Mul(Sub(1, Div(z, Add(m, Mul(n, tau)))), Exp(Add(Div(z, Add(m, Mul(n, tau))), Div(Pow(z, 2), Mul(2, Pow(Add(m, Mul(n, tau)), 2)))))), ForElement(Tuple(m, n), SetMinus(Pow(ZZ, 2), Set(Tuple(0, 0)))))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH), NotElement(z, Lattice(1, tau)))))