Assumptions:
Alternative assumptions:
TeX:
\sum_{k=0}^{\infty} {z \choose k} {x}^{k} = {\left(1 + x\right)}^{z}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|x\right| \lt 1
z \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Binomial | Binomial coefficient | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("7c014b"),
Formula(Equal(Sum(Mul(Binomial(z, k), Pow(x, k)), Tuple(k, 0, Infinity)), Pow(Add(1, x), z))),
Variables(z, x),
Assumptions(And(Element(z, CC), Element(x, CC), Less(Abs(x), 1)), And(Element(z, ZZGreaterEqual(0)), Element(z, CC))))