Assumptions:
Alternative assumptions:
TeX:
\sum_{k=0}^{\infty} {z \choose k} {x}^{k} = {\left(1 + x\right)}^{z} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|x\right| < 1 z \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Binomial | Binomial coefficient | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("7c014b"), Formula(Equal(Sum(Mul(Binomial(z, k), Pow(x, k)), For(k, 0, Infinity)), Pow(Add(1, x), z))), Variables(z, x), Assumptions(And(Element(z, CC), Element(x, CC), Less(Abs(x), 1)), And(Element(z, ZZGreaterEqual(0)), Element(z, CC))))