Assumptions:
TeX:
E_{2}\!\left(\tau\right) = 1 - 12 \sum_{m=1}^{\infty} \frac{1}{\cos\!\left(2 \pi m \tau\right) - 1} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EisensteinE | Normalized Eisenstein series | |
Sum | Sum | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
Infinity | Positive infinity | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("7b62e4"), Formula(Equal(EisensteinE(2, tau), Sub(1, Mul(12, Sum(Div(1, Sub(Cos(Mul(Mul(Mul(2, Pi), m), tau)), 1)), For(m, 1, Infinity)))))), Variables(tau), Assumptions(And(Element(tau, HH))))