Fungrim home page

Fungrim entry: 7b362f

agm ⁣(1,2)=1θ42 ⁣(0,i)\operatorname{agm}\!\left(1, \sqrt{2}\right) = \frac{1}{\theta_{4}^{2}\!\left(0, i\right)}
TeX:
\operatorname{agm}\!\left(1, \sqrt{2}\right) = \frac{1}{\theta_{4}^{2}\!\left(0, i\right)}
Definitions:
Fungrim symbol Notation Short description
AGMagm ⁣(a,b)\operatorname{agm}\!\left(a, b\right) Arithmetic-geometric mean
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Source code for this entry:
Entry(ID("7b362f"),
    Formula(Equal(AGM(1, Sqrt(2)), Div(1, Pow(JacobiTheta(4, 0, ConstI), 2)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC