Assumptions:
References:
- B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Inequality 3.10-4.
TeX:
\left|\Gamma\!\left(x + y i\right)\right| \ge \Gamma(x) {e}^{-\pi \left|y\right| / 2} x \in \left[\frac{1}{2}, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{R}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Gamma | Gamma function | |
ConstI | Imaginary unit | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity | |
RR | Real numbers |
Source code for this entry:
Entry(ID("7af1b9"), Formula(GreaterEqual(Abs(Gamma(Add(x, Mul(y, ConstI)))), Mul(Gamma(x), Exp(Neg(Div(Mul(Pi, Abs(y)), 2)))))), Variables(x, y), Assumptions(And(Element(x, ClosedOpenInterval(Div(1, 2), Infinity)), Element(y, RR))), References("B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Inequality 3.10-4."))