Fungrim home page

Fungrim entry: 7af1b9

Γ ⁣(x+yi)Γ(x)eπy/2\left|\Gamma\!\left(x + y i\right)\right| \ge \Gamma(x) {e}^{-\pi \left|y\right| / 2}
Assumptions:x[12,)  and  yRx \in \left[\frac{1}{2}, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{R}
References:
  • B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Inequality 3.10-4.
TeX:
\left|\Gamma\!\left(x + y i\right)\right| \ge \Gamma(x) {e}^{-\pi \left|y\right| / 2}

x \in \left[\frac{1}{2}, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{R}
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
GammaΓ(z)\Gamma(z) Gamma function
ConstIii Imaginary unit
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("7af1b9"),
    Formula(GreaterEqual(Abs(Gamma(Add(x, Mul(y, ConstI)))), Mul(Gamma(x), Exp(Neg(Div(Mul(Pi, Abs(y)), 2)))))),
    Variables(x, y),
    Assumptions(And(Element(x, ClosedOpenInterval(Div(1, 2), Infinity)), Element(y, RR))),
    References("B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Inequality 3.10-4."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC