Assumptions:
TeX:
P_{n}\!\left(z\right) = \frac{1}{{2}^{n}} \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} {\left(-1\right)}^{k} {n \choose k} {2 n - 2 k \choose n} {z}^{n - 2 k}
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LegendrePolynomial | Legendre polynomial | |
| Pow | Power | |
| Sum | Sum | |
| Binomial | Binomial coefficient | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("7a85b7"),
Formula(Equal(LegendrePolynomial(n, z), Mul(Div(1, Pow(2, n)), Sum(Mul(Mul(Mul(Pow(-1, k), Binomial(n, k)), Binomial(Sub(Mul(2, n), Mul(2, k)), n)), Pow(z, Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2))))))),
Variables(n, z),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))