Assumptions:
TeX:
G\!\left(z + n\right) = \left[\prod_{k=1}^{n} {\left(z + k - 1\right)}^{n - k}\right] {\left(\Gamma(z)\right)}^{n} G(z)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BarnesG | Barnes G-function | |
| Product | Product | |
| Pow | Power | |
| Gamma | Gamma function | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("7a36e5"),
Formula(Equal(BarnesG(Add(z, n)), Mul(Mul(Brackets(Product(Pow(Sub(Add(z, k), 1), Sub(n, k)), For(k, 1, n))), Pow(Gamma(z), n)), BarnesG(z)))),
Variables(z, n),
Assumptions(And(Element(z, CC), NotElement(z, ZZLessEqual(0)), Element(n, ZZGreaterEqual(0)))))