Assumptions:
TeX:
G\!\left(z + n\right) = \left[\prod_{k=1}^{n} {\left(z + k - 1\right)}^{n - k}\right] {\left(\Gamma(z)\right)}^{n} G(z) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BarnesG | Barnes G-function | |
Product | Product | |
Pow | Power | |
Gamma | Gamma function | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("7a36e5"), Formula(Equal(BarnesG(Add(z, n)), Mul(Mul(Brackets(Product(Pow(Sub(Add(z, k), 1), Sub(n, k)), For(k, 1, n))), Pow(Gamma(z), n)), BarnesG(z)))), Variables(z, n), Assumptions(And(Element(z, CC), NotElement(z, ZZLessEqual(0)), Element(n, ZZGreaterEqual(0)))))