References:
- http://mathworld.wolfram.com/PolyasRandomWalkConstants.html
TeX:
\theta_{3}\!\left(0 , \sqrt{6} i\right) = \sqrt{\frac{2}{\pi} K\!\left({\left(2 - \sqrt{3}\right)}^{2} {\left(\sqrt{2} - \sqrt{3}\right)}^{2}\right)}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Sqrt | Principal square root | |
| ConstI | Imaginary unit | |
| Pi | The constant pi (3.14...) | |
| EllipticK | Legendre complete elliptic integral of the first kind | |
| Pow | Power |
Source code for this entry:
Entry(ID("799b5e"),
Formula(Equal(JacobiTheta(3, 0, Mul(Sqrt(6), ConstI)), Sqrt(Mul(Div(2, Pi), EllipticK(Mul(Pow(Sub(2, Sqrt(3)), 2), Pow(Sub(Sqrt(2), Sqrt(3)), 2))))))),
References("http://mathworld.wolfram.com/PolyasRandomWalkConstants.html"))