Assumptions:
TeX:
g(n) = \max \left\{ \operatorname{lcm}\!\left({s}_{1}, \ldots, {s}_{k}\right) : k \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; {s}_{i} \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \sum_{i=1}^{k} {s}_{i} = n \right\}
n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LandauG | Landau's function | |
| Maximum | Maximum value of a set or function | |
| LCM | Least common multiple | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| Sum | Sum |
Source code for this entry:
Entry(ID("7932c3"),
Formula(Equal(LandauG(n), Maximum(Set(LCM(Subscript(s, 1), Ellipsis, Subscript(s, k)), For(Tuple(k, Subscript(s, i))), And(Element(k, ZZGreaterEqual(0)), Element(Subscript(s, i), ZZGreaterEqual(1)), Equal(Sum(Subscript(s, i), For(i, 1, k)), n)))))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(1))))